// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
mapping(bytes32 role => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual returns (bool) {
return _roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessControlBadConfirmation();
}
_revokeRole(role, callerConfirmation);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
if (!hasRole(role, account)) {
_roles[role].hasRole[account] = true;
emit RoleGranted(role, account, _msgSender());
return true;
} else {
return false;
}
}
/**
* @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
if (hasRole(role, account)) {
_roles[role].hasRole[account] = false;
emit RoleRevoked(role, account, _msgSender());
return true;
} else {
return false;
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error AddressInsufficientBalance(address account);
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedInnerCall();
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert AddressInsufficientBalance(address(this));
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert FailedInnerCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {FailedInnerCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert AddressInsufficientBalance(address(this));
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
* unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {FailedInnerCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert FailedInnerCall();
}
}
}
pragma solidity =0.8.20;
import '@openzeppelin/token/ERC20/utils/SafeERC20.sol';
import { AccessControl } from '@openzeppelin/contracts/access/AccessControl.sol';
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import '@openzeppelin/utils/math/Math.sol';
/**
* ---------- ERRORS ----------
*/
error ZeroToken();
error ZeroBeneficiary();
error AmountZero();
error AmountGreaterThanMaxAllocation();
error ZeroPeriods();
error Not100Percent();
error NotBeneficiary();
error NotCancellable();
error NotRevokable();
error NotTransferable();
error NotFunded();
error InvalidTimestamp();
error TooManyTimestamps();
error SameBeneficiaryAddress();
error CalendarExists();
error InvalidCalendar();
error ArrayLengthMismatch();
error ArrayMismatch(uint16 errCode, uint16 index);
error ZeroArrayLength();
error UnorderedTimestamp();
error IntervalExists();
error InvalidInterval();
error InvalidAmount();
error InvalidCliff();
error InvalidPeriod();
error InvalidWithdrawal();
error AlreadyTerminated();
error AlreadyFullyUnlocked();
error InvalidToken();
error InvalidAllocationType();
error DeflationaryTokensNotSupported();
error InvalidAllocation();
error InsufficientFunds();
error InvalidMerkleProof();
/**
* ---------- STRUCTS ----------
*/
/**
* @notice The mutable state of an allocation
* @param withdrawalAddress can be overriden when the schedule is transferable
* @param terminatedTimestamp Sentinel values: 0 is active, 1 is revoked, any other value is the time the calendar was cancelled
* @param withdrawn represents the amount withdrawn by the beneficiary
* @param terminatedWithdrawn represents the amount withdrawn from terminated funds, merkle vester does not support funding indivual allocations
* @param fundedAmount amount of tokens funded for this distribution, merkle vester does not support funding indivual allocations
* @param terminatedAmount amount of tokens terminated for this distribution, merkle vester does not support funding indivual allocations
*/
struct DistributionState {
address withdrawalAddress;
uint32 terminatedTimestamp;
uint256 withdrawn;
uint256 terminatedWithdrawn;
uint256 fundedAmount;
uint256 terminatedAmount;
}
/**
* @notice The immutable data for an allocation,
* @dev solidity does not support immutablability outside of compile time, contracts must not implement mutability
* @param id id of the allocation
* @param originalBeneficiary original beneficiary address, withdrawalAddress in DistributionState should be used for transfers
* @param totalAllocation total amount of tokens to vest in the allocaiton
* @param cancelable flag to allow for the allocation to be cancelled, unvested funds are returned to the benefactor vested funds remain withdrawable by the beneficiary
* @param revokable flag to allow for the allocation to be revoked, all funds not already withdrawn are returned to the benefactor
* @param transferableByAdmin flag to allow for the allocation to be transferred by the admin
* @param transferableByBeneficiary flag to allow for the allocation to be transferred by the beneficiary
*/
struct Allocation {
string id;
address originalBeneficiary; // original beneficiary address, withdrawalAddress should be used for transfers
uint256 totalAllocation;
bool cancelable;
bool revokable;
bool transferableByAdmin;
bool transferableByBeneficiary;
}
/**
* @notice Immutable unlock schedule for calendar allocations
* @dev solidity does not support immutablability outside of compile time, contracts must not implement mutability
* @param unlockScheduleId id of the allocation
* @param unlockTimestamps sequence of timestamps when funds will unlock
* @param unlockPercents sequence of percents that unlock at each timestamp, in 10,000ths
*/
struct CalendarUnlockSchedule {
string unlockScheduleId; // Workaround for Internal or recursive type is not allowed for public state variables
uint32[] unlockTimestamps;
uint256[] unlockPercents;
}
/**
* @notice Immutable unlock schedule for interval allocations
* @dev solidity does not support immutablability outside of compile time, contracts must not implement mutability
* @param unlockScheduleId id of the allocation
* @param pieces sequence of pieces representing phases of the unlock schedule, percents of pieces must sum to 100%
*/
struct IntervalUnlockSchedule {
string unlockScheduleId; // Workaround for Internal or recursive type is not allowed for public state variables
Piece[] pieces;
}
/**
* @notice Represents a phase of an interval unlock schedule
* @dev solidity does not support immutablability outside of compile time, contracts must not implement mutability
* @param startDate start timestamp of the piece
* @param periodLength time length of the piece
* @param numberOfPeriods how many periods for this piece
* @param percent the total percent, in 10,000ths that will unlock over the piece
*/
struct Piece {
uint32 startDate;
uint32 periodLength;
uint32 numberOfPeriods;
uint32 percent;
}
struct CalendarAllocation {
Allocation allocation;
// Many allocations share the same unlock schedule so we can save gas by referencing the same schedule
// the mapping key could be smaller than string but this will help sync with the web application
string calendarUnlockScheduleId;
DistributionState distributionState;
}
struct IntervalAllocation {
Allocation allocation;
string intervalUnlockScheduleId;
DistributionState distributionState;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)
pragma solidity ^0.8.20;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev The `account` is missing a role.
*/
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
/**
* @dev The caller of a function is not the expected one.
*
* NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
*/
error AccessControlBadConfirmation();
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*/
function renounceRole(bytes32 role, address callerConfirmation) external;
}
pragma solidity =0.8.20;
import '@openzeppelin/token/ERC20/utils/SafeERC20.sol';
import { AccessControl } from '@openzeppelin/contracts/access/AccessControl.sol';
import { ReentrancyGuard } from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import '@openzeppelin/utils/math/Math.sol';
import './AirlockTypes.sol';
/**
* @title IAirlockBase
* @dev Defines the common errors, structures, and functions for managing vesting and related actions.
*/
abstract contract IAirlockBase is AccessControl, ReentrancyGuard {
/**
* ---------- STATE ----------
*/
uint256 public totalWithdrawn;
/**
* ---------- EVENTS ----------
*/
event ScheduleCanceled(string id);
event ScheduleRevoked(string id);
event TransferredBeneficiary(string id, address newBeneficiary);
/**
* ---------- CONSTANTS/IMMUTABLES ----------
*/
address public immutable token;
bytes32 public constant BENEFACTOR = keccak256("BENEFACTOR");
/**
* @param _token token address this vesting contract will distribute
* @param _benefactor inital administator and benefactor of the contract
*/
constructor(address _token, address _benefactor) {
if (_token == address(0)) revert ZeroToken();
if (_benefactor == address(0)) revert ZeroBeneficiary();
token = _token;
_grantRole(DEFAULT_ADMIN_ROLE, _benefactor); // The benefactor specified in the deploy can grant and revoke benefactor roles using the AccessControl interface
_grantRole(BENEFACTOR, _benefactor);
}
/**
* ---------- PUBLIC WRITE ----------
*/
/**
* @notice Token rescue functionality, allows the benefactor to withdraw any other ERC20 tokens that were sent to the contract by mistake
* @param _errantTokenAddress address of the token to rescue, must not be the token the vesting contract manages
* @param _rescueAddress address to send the recovered funds to
*/
function rescueTokens(address _errantTokenAddress, address _rescueAddress) external nonReentrant onlyRole(BENEFACTOR) {
if (_errantTokenAddress == token) revert InvalidToken();
SafeERC20.safeTransfer(IERC20(_errantTokenAddress), _rescueAddress, IERC20(_errantTokenAddress).balanceOf(address(this)));
}
/**
* ---------- INTERNAL WRITE ----------
*/
/**
* @notice Internal function to update state and withdraw beneficiary funds
* @param allocation the allocation to withdraw from
* @param distributionState the storage pointer to the distribution state for the allocation
* @param withdrawableAmount amount of tokens that can be withdrawn by the beneficiary
* @param requestedWithdrawalAmount amount of tokens beneficiary requested to withdraw, or 0 for all available funds
*/
function _withdrawToBeneficiary(Allocation memory allocation, DistributionState storage distributionState, uint256 withdrawableAmount, uint256 requestedWithdrawalAmount) _validateWithdrawalInvariants(distributionState, allocation, withdrawableAmount) internal {
if (requestedWithdrawalAmount > withdrawableAmount) revert InsufficientFunds();
if (withdrawableAmount == 0) revert AmountZero();
// withdrawal amount is optional, if not provided, withdraw the entire withdrawable amount
if (requestedWithdrawalAmount == 0) requestedWithdrawalAmount = withdrawableAmount;
withdrawableAmount = Math.min(withdrawableAmount, requestedWithdrawalAmount);
// If the withdrawal address (set in the case of beneficiary transfer) is not set, use the original beneficiary
address withdrawalAddress = (distributionState.withdrawalAddress == address(0)) ? allocation.originalBeneficiary : distributionState.withdrawalAddress;
// Update the state and send funds
distributionState.withdrawn += withdrawableAmount;
totalWithdrawn += withdrawableAmount;
SafeERC20.safeTransfer(IERC20(token), withdrawalAddress, withdrawableAmount);
}
/**
* @notice Internal Transfer ownership of a calendar's beneficiary address, authorized by benefactor or beneficiary if enabled
* @param state the storage pointer to the distribution state for the allocation
* @param allocation the allocation to withdraw from
* @param _newAddress address to transfer ownership to
*/
function _transferBeneficiaryAddress(DistributionState storage state, Allocation memory allocation, address _newAddress) internal {
if (_newAddress == address(0)) revert ZeroBeneficiary();
if (_newAddress == state.withdrawalAddress) revert SameBeneficiaryAddress();
bool authorizedByAdmin = (AccessControl.hasRole(BENEFACTOR, msg.sender) && allocation.transferableByAdmin);
bool authorizedByBeneficiary = (msg.sender == state.withdrawalAddress && allocation.transferableByBeneficiary);
if (!(authorizedByAdmin || authorizedByBeneficiary)) revert NotTransferable();
state.withdrawalAddress = _newAddress;
emit TransferredBeneficiary(allocation.id, _newAddress);
}
/**
* @notice Internal verification and transfer of funds from the sender to the contract
* @dev Should only be called in nonReentrant functions. Additionally as an extra precaution function should be called before mutating state
* as a protection against tokens with callbacks see https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC4626.sol#L240
* @param _amountToFund amount of funds to transfer to the contract
*/
function _transferInFunds(uint256 _amountToFund) internal {
if (_amountToFund == 0) revert AmountZero();
uint256 currentBalance = IERC20(token).balanceOf(address(this));
SafeERC20.safeTransferFrom(IERC20(token), msg.sender, address(this), _amountToFund);
if (currentBalance + _amountToFund != IERC20(token).balanceOf(address(this))) revert DeflationaryTokensNotSupported();
}
/**
* @dev Internal withdrawal invariant validation, an additional safety measure against over-withdrawing
*/
modifier _validateWithdrawalInvariants(DistributionState storage state, Allocation memory allocation, uint256 amountWithdrawing) {
if (state.withdrawn + state.terminatedWithdrawn + amountWithdrawing > allocation.totalAllocation) revert InvalidWithdrawal();
_;
if (state.withdrawn + state.terminatedWithdrawn > allocation.totalAllocation) revert InvalidWithdrawal();
}
}
pragma solidity =0.8.20;
import '@openzeppelin/utils/math/Math.sol';
abstract contract CalendarVester {
/**
*
* @param _unlockTimestamps array of unlock timestamps
* @param _unlockPercents array of unlock percents
* @param _totalAllocation total amount of tokens to be vested
*/
function _getVestedAmount(
uint32[] memory _unlockTimestamps,
uint256[] memory _unlockPercents,
uint256 _totalAllocation,
uint256 _terminatedTimestamp
) internal view returns (uint256) {
uint256 percent;
uint32 blockTimestamp = uint32(block.timestamp);
uint256 finalTimestamp;
if (_terminatedTimestamp == 0) {
finalTimestamp = blockTimestamp;
} else {
finalTimestamp = Math.min(_terminatedTimestamp, blockTimestamp);
}
for (uint256 i = 0; i < _unlockTimestamps.length; i++) {
if (_unlockTimestamps[i] > finalTimestamp) {
break;
}
percent += _unlockPercents[i];
}
// Perecent is in 10,000ths, so for precision we need to multipy then divide
return Math.min(_totalAllocation, Math.mulDiv(_totalAllocation, percent, 10_000 * 100));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
pragma solidity =0.8.20;
import '@openzeppelin/utils/math/Math.sol';
import './IAirlockBase.sol';
abstract contract IntervalVester is IAirlockBase {
/**
* @param interval The interval data for which to calculate vested amount.
*
* @dev Iterates over the pieces and calculates the number of tokens that have vested
* @return Amount of tokens vested.
*
* @notice Gets the vested amount of tokens for a schedule
*/
function _getVestedAmount(IntervalAllocation memory interval, IntervalUnlockSchedule memory schedule) internal view returns (uint256) {
uint256 finalTimestamp = _getLastVestingTimestamp(interval.distributionState.terminatedTimestamp);
uint256 vestingEndTimestamp = _getPieceEndTime(schedule.pieces[schedule.pieces.length - 1]);
// Ensure full distribution without any rounding if we are past the end of the vesting schedule
if (finalTimestamp >= vestingEndTimestamp) return interval.allocation.totalAllocation;
// brute force iterate over schedule components
uint256 currVested;
for (uint256 index; index < schedule.pieces.length; index++) {
currVested += _componentVested(
schedule.pieces[index].startDate,
schedule.pieces[index].periodLength,
schedule.pieces[index].numberOfPeriods,
schedule.pieces[index].percent,
finalTimestamp,
interval.allocation.totalAllocation
);
}
return Math.min(interval.allocation.totalAllocation, currVested);
}
/**
* @notice Gets the date when the piece is fully vested
*/
function _getPieceEndTime(Piece memory piece) internal pure returns (uint32) {
return (piece.startDate + (piece.periodLength * piece.numberOfPeriods));
}
/**
* @param startDate The start date of the component
* @param periodLength The length of each period
* @param numberOfPeriods The number of periods in the component
* @param percent The percent of tokens that is released in the component
* @param blockTimestamp The current block timestamp
*
* @dev Calculates the number of tokens that have vested for a single component
* @return Amount of tokens vested.
*
* @notice Gets the vested amount of tokens for a schedule
*/
function _componentVested(
uint256 startDate,
uint256 periodLength,
uint256 numberOfPeriods,
uint256 percent,
uint256 blockTimestamp,
uint256 totalAllocation
) internal pure returns (uint256) {
if (blockTimestamp < startDate) {
return 0;
}
uint256 elapsedTime = blockTimestamp - startDate;
uint256 fullyVestedPeriods = elapsedTime / periodLength;
if (fullyVestedPeriods > numberOfPeriods) {
fullyVestedPeriods = numberOfPeriods;
}
uint256 amount = Math.mulDiv(totalAllocation, percent, 10_000 * 100);
return (amount * fullyVestedPeriods) / numberOfPeriods;
}
function _getLastVestingTimestamp(uint256 terminatedTimestamp) internal view returns (uint256) {
if (terminatedTimestamp != 0) {
return Math.min(block.timestamp, terminatedTimestamp);
} else {
return block.timestamp;
}
}
}
pragma solidity =0.8.20;
import '@openzeppelin/token/ERC20/utils/SafeERC20.sol';
import './interfaces/IAirlockBase.sol';
interface IMerkleVester {
/**
* ---------- PUBLIC READ ----------
*/
/**
* @notice Calculates the Hash of a given Calendar allocation leaf
* @param allocationType 'calendar' or 'interval'
* @param allocation allocation data
* @param unlockSchedule calendar unlock schedule
*/
function getCalendarLeafHash(string calldata allocationType, Allocation calldata allocation, CalendarUnlockSchedule calldata unlockSchedule) external pure returns (bytes32);
/**
* @notice Calculates the Hash of a given Interval allocation leaf
* @param allocationType 'calendar' or 'interval'
* @param allocation allocation data
* @param unlockSchedule interval unlock schedule
*/
function getIntervalLeafHash(string calldata allocationType, Allocation calldata allocation, IntervalUnlockSchedule calldata unlockSchedule) external pure returns (bytes32);
/**
* @notice Decodes calendar allocation data from decodable arguments and state stored on chain
* @param rootIndex the index of the merkle root the allocation is in
* @param decodableArgs the allocation data that constitutes the leaf to be decoded and verified
* @param proof proof data of sibling leaves to verify the leaf is included in the root
*/
function getCalendarLeafAllocationData(uint32 rootIndex, bytes calldata decodableArgs, bytes32[] calldata proof) external view returns (CalendarAllocation memory, CalendarUnlockSchedule memory);
/**
* @notice Decodes interval allocation data from decodable arguments and state stored on chain
* @param rootIndex the index of the merkle root the allocation is in
* @param decodableArgs the allocation data that constitutes the leaf to be decoded and verified
* @param proof proof data of sibling leaves to verify the leaf is included in the root
*/
function getIntervalLeafAllocationData(uint32 rootIndex, bytes calldata decodableArgs, bytes32[] calldata proof) external view returns (IntervalAllocation memory, IntervalUnlockSchedule memory);
/**
* @notice Decodes allocation data from decodable arguments, works for both calendar and interval allocations
* @param rootIndex the index of the merkle root the allocation is in
* @param decodableArgs the allocation data that constitutes the leaf to be decoded and verified
* @param proof proof data of sibling leaves to verify the leaf is included in the root
*/
function getLeafJustAllocationData(uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external view returns (Allocation memory);
/**
* ---------- PUBLIC WRITE ----------
*/
/**
* @notice Adds additional allocations in an append only manner
* @param merkleRoot the additional merkle root to append representing additional allocations
* @dev dapp is responsible for ensuring funding across all allocations otherwise withdrawals will be fulfilled first come first served
*/
function addAllocationRoot(bytes32 merkleRoot) external returns (uint256);
/**
* @notice Funds the contract with the specified amount of tokens
* @dev MerkleVester contracts are funded as a whole rather than funding individual allocations
*/
function fund(uint256 amount) external;
/**
* @notice Defunds the contract the specified amount of tokens
* @dev using defund can result in underfunding the total liabilies of the allocations, in which case allocations will be served on a first come first serve basis
*/
function defund(uint256 amount) external;
/**
* @notice Withdraws vested funds from the contract to the beneficiary
* @param withdrawalAmount optional amount to withdraw, specify 0 to withdraw all vested funds. If amount specified is greater than vested amount this call will fail since that implies a incorrect intention
* @param rootIndex the index of the merkle root the allocation is in
* @param decodableArgs the allocation data that constitutes the leaf to be decoded and verified
* @param proof proof data of sibling leaves to verify the leaf is included in the root
*/
function withdraw(uint256 withdrawalAmount, uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external;
/**
* @notice Transfers the beneficiary address of the allocation, only for allocations either transferable by the beneficiary or benefactor
* @param newBeneficiaryAddress the new beneficiary address
* @param rootIndex the index of the merkle root the allocation is in
* @param decodableArgs the allocation data that constitutes the leaf to be decoded and verified
* @param proof proof data of sibling leaves to verify the leaf is included in the root
*/
function transferBeneficiaryAddress(address newBeneficiaryAddress, uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external;
/**
* @notice Cancels the allocation, already vested funds remain withdrawable to the beneficiary
* @param rootIndex the index of the merkle root the allocation is in
* @param decodableArgs the allocation data that constitutes the leaf to be decoded and verified
* @param proof proof data of sibling leaves to verify the leaf is included in the root
*/
function cancel(uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external;
/**
* @notice Revokes the allocation, unwithdrawn funds are no longer withdrawable to the beneficiary
* @param rootIndex the index of the merkle root the allocation is in
* @param decodableArgs the allocation data that constitutes the leaf to be decoded and verified
* @param proof proof data of sibling leaves to verify the leaf is included in the root
*/
function revoke(uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external;
/**
* @notice For exceptional circumstances, it would be prohibitively expensive to run cancellation logic per allocation
*/
function revokeAll() external;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.20;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
if (leavesLen + proofLen != totalHashes + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
if (proofPos != proofLen) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Sorts the pair (a, b) and hashes the result.
*/
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
pragma solidity =0.8.20;
import { MerkleProof } from "@openzeppelin/utils/cryptography/MerkleProof.sol";
import { InvalidMerkleProof } from "./interfaces/AirlockTypes.sol";
contract MerkleValidator {
function validateLeaf(bytes32 merkleRoot, bytes memory leafArguments, bytes32[] calldata proof) external pure {
bytes32 leaf = keccak256(abi.encodePacked(leafArguments));
bool isValidLeaf = MerkleProof.verify(proof, merkleRoot, leaf);
if (!isValidLeaf) revert InvalidMerkleProof();
}
}
pragma solidity =0.8.20;
import "@openzeppelin/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/utils/Multicall.sol";
import { MerkleProof } from "@openzeppelin/utils/cryptography/MerkleProof.sol";
import "./IMerkleVester.sol";
import "./MerkleValidator.sol";
import "./interfaces/ICalendarVester.sol";
import "./interfaces/IIntervalVester.sol";
/**
* @title MerkleVester
* @author Magna
* @notice Vesting contract that uses merkle trees to scale to millions of allocations
*/
contract MerkleVester is IAirlockBase, IMerkleVester, IntervalVester, CalendarVester, MerkleValidator, Multicall {
/**
* ---------- STATE ----------
*/
/**
* @dev Lazily store the mutable state as allocaitons are interacted with
*/
mapping(string => DistributionState) public schedules;
/**
* @dev New batches of allocations are added as an additional merkle root append only to keep existing allocations immutable
*/
bytes32[] public merkleRoots;
/**
* @dev Constructor to initialize the contract, see IAirlockBase for parameter details
*/
constructor(address token, address benefactor) IAirlockBase(token, benefactor) {}
/**
* ---------- PUBLIC READ ----------
*/
/// @inheritdoc IMerkleVester
function getCalendarLeafHash(string calldata allocationType, Allocation calldata allocation, CalendarUnlockSchedule calldata unlockSchedule) external pure returns (bytes32) {
return keccak256(abi.encode(allocationType, allocation, unlockSchedule));
}
/// @inheritdoc IMerkleVester
function getIntervalLeafHash(string calldata allocationType, Allocation calldata allocation, IntervalUnlockSchedule calldata unlockSchedule) external pure returns (bytes32) {
return keccak256(abi.encode(allocationType, allocation, unlockSchedule));
}
/// @inheritdoc IMerkleVester
function getCalendarLeafAllocationData(uint32 rootIndex, bytes calldata decodableArgs, bytes32[] calldata proof) external view returns (CalendarAllocation memory, CalendarUnlockSchedule memory) {
(string memory allocationType, Allocation memory allocation, CalendarUnlockSchedule memory calendarUnlockSchedule) = abi.decode(decodableArgs, (string, Allocation, CalendarUnlockSchedule));
this.validateLeaf(merkleRoots[rootIndex], decodableArgs, proof);
DistributionState memory distributionState = schedules[allocation.id];
return (CalendarAllocation(
allocation,
calendarUnlockSchedule.unlockScheduleId,
distributionState
),
calendarUnlockSchedule
);
}
/// @inheritdoc IMerkleVester
function getIntervalLeafAllocationData(uint32 rootIndex, bytes calldata decodableArgs, bytes32[] calldata proof) external view returns (IntervalAllocation memory, IntervalUnlockSchedule memory) {
(string memory allocationType, Allocation memory allocation, IntervalUnlockSchedule memory intervalUnlockSchedule) = abi.decode(decodableArgs, (string, Allocation, IntervalUnlockSchedule));
this.validateLeaf(merkleRoots[rootIndex], decodableArgs, proof);
DistributionState memory distributionState = schedules[allocation.id];
return (IntervalAllocation(
allocation,
intervalUnlockSchedule.unlockScheduleId,
distributionState
),
intervalUnlockSchedule
);
}
/// @inheritdoc IMerkleVester
function getLeafJustAllocationData(uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external view returns (Allocation memory) {
this.validateLeaf(merkleRoots[rootIndex], decodableArgs, proof);
(, Allocation memory allocation) = abi.decode(decodableArgs, (string, Allocation));
return allocation;
}
/**
* ---------- PUBLIC WRITE ----------
*/
/// @inheritdoc IMerkleVester
function addAllocationRoot(bytes32 merkleRoot) external nonReentrant onlyRole(BENEFACTOR) returns (uint256) {
merkleRoots.push() = merkleRoot;
return merkleRoots.length - 1;
}
/**
* @inheritdoc IMerkleVester
* @dev MerkleVester funds the entire contract rather than per allocation so no additional state tracking is needed on funding
**/
function fund(uint256 amount) external override nonReentrant {
_transferInFunds(amount);
}
/// @inheritdoc IMerkleVester
function defund(uint256 amount) external override nonReentrant onlyRole(BENEFACTOR) {
SafeERC20.safeTransfer(IERC20(token), msg.sender, amount);
}
/// @inheritdoc IMerkleVester
function withdraw(uint256 withdrawalAmount, uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external override nonReentrant {
if (_isCalendar(decodableArgs)) {
_withdrawCalendar(withdrawalAmount, rootIndex, decodableArgs, proof);
} else {
_withdrawInterval(withdrawalAmount, rootIndex, decodableArgs, proof);
}
}
/**
* @dev Note: authentication is performed internally in _transferBeneficiaryAddress
**/
/// @inheritdoc IMerkleVester
function transferBeneficiaryAddress(address newBeneficiaryAddress, uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external nonReentrant {
Allocation memory allocation = this.getLeafJustAllocationData(rootIndex, decodableArgs, proof);
_checkOrSetOriginalBeneficiary(allocation);
_transferBeneficiaryAddress(schedules[allocation.id], allocation, newBeneficiaryAddress);
}
/**
* @dev cancel and revoke don't need to track the terminated amount since merkle vester doesn't have per allocation underfunding
**/
/// @inheritdoc IMerkleVester
function cancel(uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external override nonReentrant onlyRole(BENEFACTOR) {
Allocation memory allocation = this.getLeafJustAllocationData(rootIndex, decodableArgs, proof);
if (allocation.originalBeneficiary == address(0)) revert InvalidAllocation();
if (!allocation.cancelable) revert NotCancellable();
if (schedules[allocation.id].terminatedTimestamp != 0) revert AlreadyTerminated();
_checkAlreadyFullyUnlocked(rootIndex, decodableArgs, proof);
schedules[allocation.id].terminatedTimestamp = uint32(block.timestamp);
emit ScheduleCanceled(allocation.id);
}
/// @inheritdoc IMerkleVester
function revoke(uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) external override nonReentrant onlyRole(BENEFACTOR) {
Allocation memory allocation = this.getLeafJustAllocationData(rootIndex, decodableArgs, proof);
if (allocation.originalBeneficiary == address(0)) revert InvalidAllocation();
if (!allocation.revokable) revert NotRevokable();
if (schedules[allocation.id].terminatedTimestamp != 0) revert AlreadyTerminated();
// We use 1 as a sentinel value here to ensure that any withdrawals would not see anything vested and thus withdrawable
schedules[allocation.id].terminatedTimestamp = uint32(1);
emit ScheduleRevoked(allocation.id);
}
/// @inheritdoc IMerkleVester
function revokeAll() external nonReentrant onlyRole(BENEFACTOR) {
SafeERC20.safeTransfer(IERC20(token), msg.sender, IERC20(token).balanceOf(address(this)));
}
/**
* ---------- INTERNAL READ ----------
*/
function _checkAlreadyFullyUnlocked(uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) internal view {
if (_isCalendar(decodableArgs)) {
(CalendarAllocation memory calendar, CalendarUnlockSchedule memory unlockSchedule) = this.getCalendarLeafAllocationData(rootIndex, decodableArgs, proof);
if (block.timestamp >= unlockSchedule.unlockTimestamps[unlockSchedule.unlockTimestamps.length - 1]) revert AlreadyFullyUnlocked();
} else {
(IntervalAllocation memory interval, IntervalUnlockSchedule memory intervalUnlockSchedule) = this.getIntervalLeafAllocationData(rootIndex, decodableArgs, proof);
uint32 finalUnlockTimestamp = _getPieceEndTime(intervalUnlockSchedule.pieces[intervalUnlockSchedule.pieces.length - 1]);
if (block.timestamp >= finalUnlockTimestamp) revert AlreadyFullyUnlocked();
}
}
/**
* @dev MerkleVester lazily sets the mutable schedule state, so we need to check if withdrawalAddress has not been set, and if so set it to the immutable allocations originalBeneficiary address
**/
function _checkOrSetOriginalBeneficiary(Allocation memory allocation) internal {
if (schedules[allocation.id].withdrawalAddress == address(0)) {
schedules[allocation.id].withdrawalAddress = allocation.originalBeneficiary;
}
}
function _isCalendar(bytes memory decodableArgs) internal pure returns (bool) {
(string memory allocationType) = abi.decode(decodableArgs, (string));
if (keccak256(abi.encodePacked(allocationType)) == keccak256('calendar')) {
return true;
} else if (keccak256(abi.encodePacked(allocationType)) == keccak256('interval')) {
return false;
} else {
revert InvalidAllocationType();
}
}
/**
* ---------- INTERNAL WRITE ----------
*/
function _withdrawCalendar(uint256 withdrawalAmount, uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) internal {
(CalendarAllocation memory calendar, CalendarUnlockSchedule memory unlockSchedule) = this.getCalendarLeafAllocationData(rootIndex, decodableArgs, proof);
uint256 withdrawableAmount = _getVestedAmount(
unlockSchedule.unlockTimestamps,
unlockSchedule.unlockPercents,
calendar.allocation.totalAllocation,
schedules[calendar.allocation.id].terminatedTimestamp
) - schedules[calendar.allocation.id].withdrawn;
uint256 contractBalance = IERC20(token).balanceOf(address(this));
_checkOrSetOriginalBeneficiary(calendar.allocation);
withdrawableAmount = Math.min(withdrawableAmount, contractBalance);
_withdrawToBeneficiary(calendar.allocation, schedules[calendar.allocation.id], withdrawableAmount, withdrawalAmount);
}
function _withdrawInterval(uint256 withdrawalAmount, uint32 rootIndex, bytes memory decodableArgs, bytes32[] calldata proof) internal {
(IntervalAllocation memory interval, IntervalUnlockSchedule memory intervalUnlockSchedule) = this.getIntervalLeafAllocationData(rootIndex, decodableArgs, proof);
uint256 withdrawableAmount = _getVestedAmount(interval, intervalUnlockSchedule) - schedules[interval.allocation.id].withdrawn;
uint256 contractBalance = IERC20(token).balanceOf(address(this));
_checkOrSetOriginalBeneficiary(interval.allocation);
withdrawableAmount = Math.min(withdrawableAmount, contractBalance);
_withdrawToBeneficiary(interval.allocation, schedules[interval.allocation.id], withdrawableAmount, withdrawalAmount);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Multicall.sol)
pragma solidity ^0.8.20;
import {Address} from "./Address.sol";
/**
* @dev Provides a function to batch together multiple calls in a single external call.
*/
abstract contract Multicall {
/**
* @dev Receives and executes a batch of function calls on this contract.
* @custom:oz-upgrades-unsafe-allow-reachable delegatecall
*/
function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) {
results = new bytes[](data.length);
for (uint256 i = 0; i < data.length; i++) {
results[i] = Address.functionDelegateCall(address(this), data[i]);
}
return results;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using Address for address;
/**
* @dev An operation with an ERC20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
}
}
{
"compilationTarget": {
"src/MerkleVester.sol": "MerkleVester"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 10000000
},
"remappings": [
":@murky/=lib/murky/src/",
":@openzeppelin/=lib/openzeppelin-contracts/contracts/",
":@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
":@solady/=lib/solady/src/",
":ds-test/=lib/forge-std/lib/ds-test/src/",
":erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
":forge-std/=lib/forge-std/src/",
":openzeppelin-contracts/=lib/openzeppelin-contracts/",
":solady/=lib/solady/"
],
"viaIR": true
}
[{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"benefactor","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"AlreadyFullyUnlocked","type":"error"},{"inputs":[],"name":"AlreadyTerminated","type":"error"},{"inputs":[],"name":"AmountZero","type":"error"},{"inputs":[],"name":"DeflationaryTokensNotSupported","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"InsufficientFunds","type":"error"},{"inputs":[],"name":"InvalidAllocation","type":"error"},{"inputs":[],"name":"InvalidAllocationType","type":"error"},{"inputs":[],"name":"InvalidMerkleProof","type":"error"},{"inputs":[],"name":"InvalidToken","type":"error"},{"inputs":[],"name":"InvalidWithdrawal","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[],"name":"NotCancellable","type":"error"},{"inputs":[],"name":"NotRevokable","type":"error"},{"inputs":[],"name":"NotTransferable","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"SameBeneficiaryAddress","type":"error"},{"inputs":[],"name":"ZeroBeneficiary","type":"error"},{"inputs":[],"name":"ZeroToken","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"id","type":"string"}],"name":"ScheduleCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"id","type":"string"}],"name":"ScheduleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"id","type":"string"},{"indexed":false,"internalType":"address","name":"newBeneficiary","type":"address"}],"name":"TransferredBeneficiary","type":"event"},{"inputs":[],"name":"BENEFACTOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"name":"addAllocationRoot","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"rootIndex","type":"uint32"},{"internalType":"bytes","name":"decodableArgs","type":"bytes"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"cancel","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"defund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"fund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"rootIndex","type":"uint32"},{"internalType":"bytes","name":"decodableArgs","type":"bytes"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"getCalendarLeafAllocationData","outputs":[{"components":[{"components":[{"internalType":"string","name":"id","type":"string"},{"internalType":"address","name":"originalBeneficiary","type":"address"},{"internalType":"uint256","name":"totalAllocation","type":"uint256"},{"internalType":"bool","name":"cancelable","type":"bool"},{"internalType":"bool","name":"revokable","type":"bool"},{"internalType":"bool","name":"transferableByAdmin","type":"bool"},{"internalType":"bool","name":"transferableByBeneficiary","type":"bool"}],"internalType":"struct Allocation","name":"allocation","type":"tuple"},{"internalType":"string","name":"calendarUnlockScheduleId","type":"string"},{"components":[{"internalType":"address","name":"withdrawalAddress","type":"address"},{"internalType":"uint32","name":"terminatedTimestamp","type":"uint32"},{"internalType":"uint256","name":"withdrawn","type":"uint256"},{"internalType":"uint256","name":"terminatedWithdrawn","type":"uint256"},{"internalType":"uint256","name":"fundedAmount","type":"uint256"},{"internalType":"uint256","name":"terminatedAmount","type":"uint256"}],"internalType":"struct DistributionState","name":"distributionState","type":"tuple"}],"internalType":"struct CalendarAllocation","name":"","type":"tuple"},{"components":[{"internalType":"string","name":"unlockScheduleId","type":"string"},{"internalType":"uint32[]","name":"unlockTimestamps","type":"uint32[]"},{"internalType":"uint256[]","name":"unlockPercents","type":"uint256[]"}],"internalType":"struct CalendarUnlockSchedule","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"allocationType","type":"string"},{"components":[{"internalType":"string","name":"id","type":"string"},{"internalType":"address","name":"originalBeneficiary","type":"address"},{"internalType":"uint256","name":"totalAllocation","type":"uint256"},{"internalType":"bool","name":"cancelable","type":"bool"},{"internalType":"bool","name":"revokable","type":"bool"},{"internalType":"bool","name":"transferableByAdmin","type":"bool"},{"internalType":"bool","name":"transferableByBeneficiary","type":"bool"}],"internalType":"struct Allocation","name":"allocation","type":"tuple"},{"components":[{"internalType":"string","name":"unlockScheduleId","type":"string"},{"internalType":"uint32[]","name":"unlockTimestamps","type":"uint32[]"},{"internalType":"uint256[]","name":"unlockPercents","type":"uint256[]"}],"internalType":"struct CalendarUnlockSchedule","name":"unlockSchedule","type":"tuple"}],"name":"getCalendarLeafHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint32","name":"rootIndex","type":"uint32"},{"internalType":"bytes","name":"decodableArgs","type":"bytes"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"getIntervalLeafAllocationData","outputs":[{"components":[{"components":[{"internalType":"string","name":"id","type":"string"},{"internalType":"address","name":"originalBeneficiary","type":"address"},{"internalType":"uint256","name":"totalAllocation","type":"uint256"},{"internalType":"bool","name":"cancelable","type":"bool"},{"internalType":"bool","name":"revokable","type":"bool"},{"internalType":"bool","name":"transferableByAdmin","type":"bool"},{"internalType":"bool","name":"transferableByBeneficiary","type":"bool"}],"internalType":"struct Allocation","name":"allocation","type":"tuple"},{"internalType":"string","name":"intervalUnlockScheduleId","type":"string"},{"components":[{"internalType":"address","name":"withdrawalAddress","type":"address"},{"internalType":"uint32","name":"terminatedTimestamp","type":"uint32"},{"internalType":"uint256","name":"withdrawn","type":"uint256"},{"internalType":"uint256","name":"terminatedWithdrawn","type":"uint256"},{"internalType":"uint256","name":"fundedAmount","type":"uint256"},{"internalType":"uint256","name":"terminatedAmount","type":"uint256"}],"internalType":"struct DistributionState","name":"distributionState","type":"tuple"}],"internalType":"struct IntervalAllocation","name":"","type":"tuple"},{"components":[{"internalType":"string","name":"unlockScheduleId","type":"string"},{"components":[{"internalType":"uint32","name":"startDate","type":"uint32"},{"internalType":"uint32","name":"periodLength","type":"uint32"},{"internalType":"uint32","name":"numberOfPeriods","type":"uint32"},{"internalType":"uint32","name":"percent","type":"uint32"}],"internalType":"struct Piece[]","name":"pieces","type":"tuple[]"}],"internalType":"struct IntervalUnlockSchedule","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"allocationType","type":"string"},{"components":[{"internalType":"string","name":"id","type":"string"},{"internalType":"address","name":"originalBeneficiary","type":"address"},{"internalType":"uint256","name":"totalAllocation","type":"uint256"},{"internalType":"bool","name":"cancelable","type":"bool"},{"internalType":"bool","name":"revokable","type":"bool"},{"internalType":"bool","name":"transferableByAdmin","type":"bool"},{"internalType":"bool","name":"transferableByBeneficiary","type":"bool"}],"internalType":"struct Allocation","name":"allocation","type":"tuple"},{"components":[{"internalType":"string","name":"unlockScheduleId","type":"string"},{"components":[{"internalType":"uint32","name":"startDate","type":"uint32"},{"internalType":"uint32","name":"periodLength","type":"uint32"},{"internalType":"uint32","name":"numberOfPeriods","type":"uint32"},{"internalType":"uint32","name":"percent","type":"uint32"}],"internalType":"struct Piece[]","name":"pieces","type":"tuple[]"}],"internalType":"struct IntervalUnlockSchedule","name":"unlockSchedule","type":"tuple"}],"name":"getIntervalLeafHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint32","name":"rootIndex","type":"uint32"},{"internalType":"bytes","name":"decodableArgs","type":"bytes"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"getLeafJustAllocationData","outputs":[{"components":[{"internalType":"string","name":"id","type":"string"},{"internalType":"address","name":"originalBeneficiary","type":"address"},{"internalType":"uint256","name":"totalAllocation","type":"uint256"},{"internalType":"bool","name":"cancelable","type":"bool"},{"internalType":"bool","name":"revokable","type":"bool"},{"internalType":"bool","name":"transferableByAdmin","type":"bool"},{"internalType":"bool","name":"transferableByBeneficiary","type":"bool"}],"internalType":"struct Allocation","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"merkleRoots","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"data","type":"bytes[]"}],"name":"multicall","outputs":[{"internalType":"bytes[]","name":"results","type":"bytes[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_errantTokenAddress","type":"address"},{"internalType":"address","name":"_rescueAddress","type":"address"}],"name":"rescueTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"rootIndex","type":"uint32"},{"internalType":"bytes","name":"decodableArgs","type":"bytes"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"revoke","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"revokeAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"","type":"string"}],"name":"schedules","outputs":[{"internalType":"address","name":"withdrawalAddress","type":"address"},{"internalType":"uint32","name":"terminatedTimestamp","type":"uint32"},{"internalType":"uint256","name":"withdrawn","type":"uint256"},{"internalType":"uint256","name":"terminatedWithdrawn","type":"uint256"},{"internalType":"uint256","name":"fundedAmount","type":"uint256"},{"internalType":"uint256","name":"terminatedAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalWithdrawn","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newBeneficiaryAddress","type":"address"},{"internalType":"uint32","name":"rootIndex","type":"uint32"},{"internalType":"bytes","name":"decodableArgs","type":"bytes"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"transferBeneficiaryAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"bytes","name":"leafArguments","type":"bytes"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"validateLeaf","outputs":[],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"withdrawalAmount","type":"uint256"},{"internalType":"uint32","name":"rootIndex","type":"uint32"},{"internalType":"bytes","name":"decodableArgs","type":"bytes"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]