// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.7.6;
pragma abicoder v2;
import "./openzeppelin/security/ReentrancyGuard.sol";
import "../libs/Constant.sol";
import "../libs/PoolAddress.sol";
import "../libs/CallbackValidation.sol";
import "../libs/TransferHelper.sol";
import "../libs/FullMath.sol";
import "../interfaces/IUniswapV3Pool.sol";
import "../interfaces/IWETH9.sol";
import "../interfaces/ITITANX.sol";
contract BuyAndBurnV2 is ReentrancyGuard {
/** @dev genesis timestamp */
uint256 private immutable i_genesisTs;
/** @dev owner address */
address private s_ownerAddress;
/** @dev tracks total weth used for buyandburn */
uint256 private s_totalWethBuyAndBurn;
/** @dev tracks titan burned through buyandburn */
uint256 private s_totalTitanBuyAndBurn;
/** @dev tracks current per swap cap */
uint256 private s_capPerSwap;
/** @dev tracks timestamp of the last buynburn was called */
uint256 private s_lastCallTs;
/** @dev slippage amount between 0 - 50 */
uint256 private s_slippage;
/** @dev buynburn interval in seconds */
uint256 private s_interval;
event BoughtAndBurned(
uint256 indexed weth,
uint256 indexed titan,
address indexed caller
);
event CollectedFees(
uint256 indexed weth,
uint256 indexed titan,
address indexed caller
);
constructor() {
i_genesisTs = block.timestamp;
s_ownerAddress = msg.sender;
s_capPerSwap = 1 ether;
s_slippage = 5;
s_interval = 60;
}
/** @notice receive eth and convert all eth into weth */
receive() external payable {
//prevent ETH withdrawal received from WETH contract into deposit function
if (msg.sender != WETH9) IWETH9(WETH9).deposit{value: msg.value}();
}
/** @notice remove owner */
function renounceOwnership() public {
require(msg.sender == s_ownerAddress, "InvalidCaller");
s_ownerAddress = address(0);
}
/** @notice set new owner address. Only callable by owner address.
* @param ownerAddress new owner address
*/
function setOwnerAddress(address ownerAddress) external {
require(msg.sender == s_ownerAddress, "InvalidCaller");
require(ownerAddress != address(0), "InvalidAddress");
s_ownerAddress = ownerAddress;
}
/**
* @notice set weth cap amount per buynburn call. Only callable by owner address.
* @param amount amount in 18 decimals
*/
function setCapPerSwap(uint256 amount) external {
require(msg.sender == s_ownerAddress, "InvalidCaller");
s_capPerSwap = amount;
}
/**
* @notice set slippage % for buynburn minimum received amount. Only callable by owner address.
* @param amount amount from 0 - 50
*/
function setSlippage(uint256 amount) external {
require(msg.sender == s_ownerAddress, "InvalidCaller");
require(amount >= 5 && amount <= 15, "5-15_Only");
s_slippage = amount;
}
/**
* @notice set buynburn call interval in seconds. Only callable by owner address.
* @param secs amount in seconds
*/
function setBuynBurnInterval(uint256 secs) external {
require(msg.sender == s_ownerAddress, "InvalidCaller");
require(
secs >= MIN_INTERVAL_SECONDS && secs <= MAX_INTERVAL_SECONDS,
"1m-12h_Only"
);
s_interval = secs;
}
/** @notice burn all Titan in BuyAndBurn address */
function burnLPTitan() public {
ITITANX(TITANX).burnLPTokens();
}
/** @notice buy and burn Titan from uniswap pool */
function buynBurn() public nonReentrant {
//prevent contract accounts (bots) from calling this function
require(msg.sender == tx.origin, "InvalidCaller");
//a minium gap of 1 min between each call
require(block.timestamp - s_lastCallTs > s_interval, "IntervalWait");
s_lastCallTs = block.timestamp;
uint256 wethAmount = getWethBalance(address(this));
require(wethAmount != 0, "NoAvailableFunds");
uint256 wethCap = s_capPerSwap;
if (wethAmount > wethCap) wethAmount = wethCap;
uint256 incentiveFee = (wethAmount * INCENTIVE_FEE) /
INCENTIVE_FEE_PERCENT_BASE;
IWETH9(WETH9).withdraw(incentiveFee);
wethAmount -= incentiveFee;
_swapWETHForTitan(wethAmount);
TransferHelper.safeTransferETH(payable(msg.sender), incentiveFee);
}
/** @notice Used by uniswapV3. Modified from uniswapV3 swap callback function to complete the swap */
function uniswapV3SwapCallback(
int256 amount0Delta,
int256 amount1Delta,
bytes calldata
) external {
require(amount0Delta > 0 || amount1Delta > 0); // swaps entirely within 0-liquidity regions are not supported
IUniswapV3Pool pool = CallbackValidation.verifyCallback(
UNISWAPV3FACTORY,
WETH9,
TITANX,
POOLFEE1PERCENT
);
require(address(pool) == TITANX_WETH_POOL, "WrongPool");
//swap weth for titan
TransferHelper.safeTransferFrom(
WETH9,
address(this),
msg.sender,
amount0Delta > 0 ? uint256(amount0Delta) : uint256(amount1Delta)
);
s_totalWethBuyAndBurn += amount0Delta > 0
? uint256(amount0Delta)
: uint256(amount1Delta);
}
// ==================== Private Functions =======================================
/** @dev call uniswap swap function to swap weth for titan, then burn all titan
* @param amountWETH weth amount
*/
function _swapWETHForTitan(uint256 amountWETH) private {
//calculate minimum amount for slippage protection
uint256 minTokenAmount = ((amountWETH * 1 ether * (100 - s_slippage)) /
getCurrentEthPrice()) / 100;
(int256 amount0, int256 amount1) = IUniswapV3Pool(TITANX_WETH_POOL)
.swap(
address(this),
WETH9 < TITANX,
int256(amountWETH),
WETH9 < TITANX ? MIN_SQRT_RATIO + 1 : MAX_SQRT_RATIO - 1,
""
);
uint256 titan = WETH9 < TITANX
? uint256(amount1 >= 0 ? amount1 : -amount1)
: uint256(amount0 >= 0 ? amount0 : -amount0);
//slippage protection check
require(titan >= minTokenAmount, "TooLittleReceived");
s_totalTitanBuyAndBurn += titan;
burnLPTitan();
emit BoughtAndBurned(amountWETH, titan, msg.sender);
}
//views
/** @notice get titanx weth pool address
* @return address titanx weth pool address
*/
function getPoolAddress() public pure returns (address) {
return TITANX_WETH_POOL;
}
/** @notice get contract ETH balance
* @return balance contract ETH balance
*/
function getBalance() public view returns (uint256) {
return address(this).balance;
}
/** @notice get WETH balance for speciifed address
* @param account address
* @return balance WETH balance
*/
function getWethBalance(address account) public view returns (uint256) {
return IWETH9(WETH9).balanceOf(account);
}
/** @notice get titan balance for speicifed address
* @param account address
*/
function getTitanBalance(address account) public view returns (uint256) {
return ITITANX(TITANX).balanceOf(account);
}
/** @notice get buy and burn current contract day
* @return day current contract day
*/
function getCurrentContractDay() public view returns (uint256) {
return ((block.timestamp - i_genesisTs) / SECONDS_IN_DAY) + 1;
}
/** @notice get current sqrt price
* @return sqrtPrice sqrt Price X96
*/
function getCurrentSqrtPriceX96() public view returns (uint160) {
IUniswapV3Pool pool = IUniswapV3Pool(TITANX_WETH_POOL);
(uint160 sqrtPriceX96, , , , , , ) = pool.slot0();
return sqrtPriceX96;
}
/** @notice get current eth price
* @return ethPrice eth price
*/
function getCurrentEthPrice() public view returns (uint256) {
IUniswapV3Pool pool = IUniswapV3Pool(TITANX_WETH_POOL);
(uint256 sqrtPriceX96, , , , , , ) = pool.slot0();
uint256 numerator1 = sqrtPriceX96 * sqrtPriceX96;
uint256 numerator2 = 10 ** 18;
uint256 price = FullMath.mulDiv(numerator1, numerator2, 1 << 192);
price = WETH9 < TITANX ? (1 ether * 1 ether) / price : price;
return price;
}
/** @notice get cap amount per buy and burn
* @return cap amount
*/
function getWethBuyAndBurnCap() public view returns (uint256) {
return s_capPerSwap;
}
/** @notice get buynburn slippage
* @return slippage
*/
function getSlippage() public view returns (uint256) {
return s_slippage;
}
/** @notice get the buynburn interval between each call in seconds
* @return seconds
*/
function getBuynBurnInterval() public view returns (uint256) {
return s_interval;
}
/** @notice since burnLPTokens in TitanX reads the BuyAndBurn CA, TitanX in V1 will not be burned when CA we migrate to V2,
* so we just have remove the supply owned by V1
* @return return the actual total supply
*/
function totalTitanXLiquidSupply() public view returns (uint256) {
return ITITANX(TITANX).totalSupply() - getTitanBalance(BUYANDBURNV1);
}
// ==================== BuyAndBurnV2 Getters =======================================
/** @notice get buy and burn funds (exclude weth fees)
* @return amount weth amount
*/
function getBuyAndBurnFundsV2() public view returns (uint256) {
return getWethBalance(address(this));
}
/** @notice get total weth amount used to buy and burn (exclude weth fees)
* @return amount total weth amount
*/
function getTotalWethBuyAndBurnV2() public view returns (uint256) {
return s_totalWethBuyAndBurn;
}
/** @notice get total titan amount burned from all buy and burn
* @return amount total titan amount
*/
function getTotalTitanBuyAndBurnV2() public view returns (uint256) {
return s_totalTitanBuyAndBurn;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.7.6;
import "../interfaces/IUniswapV3Pool.sol";
import "./PoolAddress.sol";
/// @notice Provides validation for callbacks from Uniswap V3 Pools
library CallbackValidation {
/// @notice Returns the address of a valid Uniswap V3 Pool
/// @param factory The contract address of the Uniswap V3 factory
/// @param tokenA The contract address of either token0 or token1
/// @param tokenB The contract address of the other token
/// @param fee The fee collected upon every swap in the pool, denominated in hundredths of a bip
/// @return pool The V3 pool contract address
function verifyCallback(
address factory,
address tokenA,
address tokenB,
uint24 fee
) internal view returns (IUniswapV3Pool pool) {
return
verifyCallback(
factory,
PoolAddress.getPoolKey(tokenA, tokenB, fee)
);
}
/// @notice Returns the address of a valid Uniswap V3 Pool
/// @param factory The contract address of the Uniswap V3 factory
/// @param poolKey The identifying key of the V3 pool
/// @return pool The V3 pool contract address
function verifyCallback(
address factory,
PoolAddress.PoolKey memory poolKey
) internal view returns (IUniswapV3Pool pool) {
pool = IUniswapV3Pool(PoolAddress.computeAddress(factory, poolKey));
require(msg.sender == address(pool));
}
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.7.6;
address constant TITANX = 0xF19308F923582A6f7c465e5CE7a9Dc1BEC6665B1;
address constant BUYANDBURNV1 = 0x1393ad734EA3c52865b4B541cf049dafd25c23a5;
address constant TITANX_WETH_POOL = 0xc45A81BC23A64eA556ab4CdF08A86B61cdcEEA8b;
address constant UNISWAPV3FACTORY = 0x1F98431c8aD98523631AE4a59f267346ea31F984;
address constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
uint256 constant SECONDS_IN_DAY = 86400;
uint24 constant POOLFEE1PERCENT = 10000; //1% Fee
uint160 constant MIN_SQRT_RATIO = 4295128739;
uint160 constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;
uint256 constant INCENTIVE_FEE = 3300;
uint256 constant INCENTIVE_FEE_PERCENT_BASE = 1_000_000;
uint256 constant MIN_INTERVAL_SECONDS = 60;
uint256 constant MAX_INTERVAL_SECONDS = 43200; //12 hours
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.6;
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = -denominator & denominator;
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivRoundingUp(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
result = mulDiv(a, b, denominator);
if (mulmod(a, b, denominator) > 0) {
require(result < type(uint256).max);
result++;
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(
address owner,
address spender
) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.7.6;
interface ITITANX {
function burnLPTokens() external;
function balanceOf(address account) external view returns (uint256);
function totalSupply() external view returns (uint256);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
import "./pool/IUniswapV3PoolImmutables.sol";
import "./pool/IUniswapV3PoolState.sol";
import "./pool/IUniswapV3PoolDerivedState.sol";
import "./pool/IUniswapV3PoolActions.sol";
import "./pool/IUniswapV3PoolOwnerActions.sol";
import "./pool/IUniswapV3PoolEvents.sol";
/// @title The interface for a Uniswap V3 Pool
/// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IUniswapV3Pool is
IUniswapV3PoolImmutables,
IUniswapV3PoolState,
IUniswapV3PoolDerivedState,
IUniswapV3PoolActions,
IUniswapV3PoolOwnerActions,
IUniswapV3PoolEvents
{
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IUniswapV3PoolActions {
/// @notice Sets the initial price for the pool
/// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
/// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
function initialize(uint160 sqrtPriceX96) external;
/// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
/// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
/// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
/// on tickLower, tickUpper, the amount of liquidity, and the current price.
/// @param recipient The address for which the liquidity will be created
/// @param tickLower The lower tick of the position in which to add liquidity
/// @param tickUpper The upper tick of the position in which to add liquidity
/// @param amount The amount of liquidity to mint
/// @param data Any data that should be passed through to the callback
/// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
/// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
function mint(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount,
bytes calldata data
) external returns (uint256 amount0, uint256 amount1);
/// @notice Collects tokens owed to a position
/// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
/// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
/// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
/// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
/// @param recipient The address which should receive the fees collected
/// @param tickLower The lower tick of the position for which to collect fees
/// @param tickUpper The upper tick of the position for which to collect fees
/// @param amount0Requested How much token0 should be withdrawn from the fees owed
/// @param amount1Requested How much token1 should be withdrawn from the fees owed
/// @return amount0 The amount of fees collected in token0
/// @return amount1 The amount of fees collected in token1
function collect(
address recipient,
int24 tickLower,
int24 tickUpper,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
/// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
/// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
/// @dev Fees must be collected separately via a call to #collect
/// @param tickLower The lower tick of the position for which to burn liquidity
/// @param tickUpper The upper tick of the position for which to burn liquidity
/// @param amount How much liquidity to burn
/// @return amount0 The amount of token0 sent to the recipient
/// @return amount1 The amount of token1 sent to the recipient
function burn(
int24 tickLower,
int24 tickUpper,
uint128 amount
) external returns (uint256 amount0, uint256 amount1);
/// @notice Swap token0 for token1, or token1 for token0
/// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
/// @param recipient The address to receive the output of the swap
/// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
/// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
/// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
/// value after the swap. If one for zero, the price cannot be greater than this value after the swap
/// @param data Any data to be passed through to the callback
/// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
/// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
function swap(
address recipient,
bool zeroForOne,
int256 amountSpecified,
uint160 sqrtPriceLimitX96,
bytes calldata data
) external returns (int256 amount0, int256 amount1);
/// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
/// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
/// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
/// with 0 amount{0,1} and sending the donation amount(s) from the callback
/// @param recipient The address which will receive the token0 and token1 amounts
/// @param amount0 The amount of token0 to send
/// @param amount1 The amount of token1 to send
/// @param data Any data to be passed through to the callback
function flash(
address recipient,
uint256 amount0,
uint256 amount1,
bytes calldata data
) external;
/// @notice Increase the maximum number of price and liquidity observations that this pool will store
/// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
/// the input observationCardinalityNext.
/// @param observationCardinalityNext The desired minimum number of observations for the pool to store
function increaseObservationCardinalityNext(
uint16 observationCardinalityNext
) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IUniswapV3PoolDerivedState {
/// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
/// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
/// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
/// you must call it with secondsAgos = [3600, 0].
/// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
/// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
/// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
/// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
/// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
/// timestamp
function observe(
uint32[] calldata secondsAgos
)
external
view
returns (
int56[] memory tickCumulatives,
uint160[] memory secondsPerLiquidityCumulativeX128s
);
/// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
/// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
/// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
/// snapshot is taken and the second snapshot is taken.
/// @param tickLower The lower tick of the range
/// @param tickUpper The upper tick of the range
/// @return tickCumulativeInside The snapshot of the tick accumulator for the range
/// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
/// @return secondsInside The snapshot of seconds per liquidity for the range
function snapshotCumulativesInside(
int24 tickLower,
int24 tickUpper
)
external
view
returns (
int56 tickCumulativeInside,
uint160 secondsPerLiquidityInsideX128,
uint32 secondsInside
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Events emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolEvents {
/// @notice Emitted exactly once by a pool when #initialize is first called on the pool
/// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
/// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
/// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
event Initialize(uint160 sqrtPriceX96, int24 tick);
/// @notice Emitted when liquidity is minted for a given position
/// @param sender The address that minted the liquidity
/// @param owner The owner of the position and recipient of any minted liquidity
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount The amount of liquidity minted to the position range
/// @param amount0 How much token0 was required for the minted liquidity
/// @param amount1 How much token1 was required for the minted liquidity
event Mint(
address sender,
address indexed owner,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted when fees are collected by the owner of a position
/// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
/// @param owner The owner of the position for which fees are collected
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount0 The amount of token0 fees collected
/// @param amount1 The amount of token1 fees collected
event Collect(
address indexed owner,
address recipient,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount0,
uint128 amount1
);
/// @notice Emitted when a position's liquidity is removed
/// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
/// @param owner The owner of the position for which liquidity is removed
/// @param tickLower The lower tick of the position
/// @param tickUpper The upper tick of the position
/// @param amount The amount of liquidity to remove
/// @param amount0 The amount of token0 withdrawn
/// @param amount1 The amount of token1 withdrawn
event Burn(
address indexed owner,
int24 indexed tickLower,
int24 indexed tickUpper,
uint128 amount,
uint256 amount0,
uint256 amount1
);
/// @notice Emitted by the pool for any swaps between token0 and token1
/// @param sender The address that initiated the swap call, and that received the callback
/// @param recipient The address that received the output of the swap
/// @param amount0 The delta of the token0 balance of the pool
/// @param amount1 The delta of the token1 balance of the pool
/// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
/// @param liquidity The liquidity of the pool after the swap
/// @param tick The log base 1.0001 of price of the pool after the swap
event Swap(
address indexed sender,
address indexed recipient,
int256 amount0,
int256 amount1,
uint160 sqrtPriceX96,
uint128 liquidity,
int24 tick
);
/// @notice Emitted by the pool for any flashes of token0/token1
/// @param sender The address that initiated the swap call, and that received the callback
/// @param recipient The address that received the tokens from flash
/// @param amount0 The amount of token0 that was flashed
/// @param amount1 The amount of token1 that was flashed
/// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
/// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
event Flash(
address indexed sender,
address indexed recipient,
uint256 amount0,
uint256 amount1,
uint256 paid0,
uint256 paid1
);
/// @notice Emitted by the pool for increases to the number of observations that can be stored
/// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
/// just before a mint/swap/burn.
/// @param observationCardinalityNextOld The previous value of the next observation cardinality
/// @param observationCardinalityNextNew The updated value of the next observation cardinality
event IncreaseObservationCardinalityNext(
uint16 observationCardinalityNextOld,
uint16 observationCardinalityNextNew
);
/// @notice Emitted when the protocol fee is changed by the pool
/// @param feeProtocol0Old The previous value of the token0 protocol fee
/// @param feeProtocol1Old The previous value of the token1 protocol fee
/// @param feeProtocol0New The updated value of the token0 protocol fee
/// @param feeProtocol1New The updated value of the token1 protocol fee
event SetFeeProtocol(
uint8 feeProtocol0Old,
uint8 feeProtocol1Old,
uint8 feeProtocol0New,
uint8 feeProtocol1New
);
/// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
/// @param sender The address that collects the protocol fees
/// @param recipient The address that receives the collected protocol fees
/// @param amount0 The amount of token0 protocol fees that is withdrawn
/// @param amount0 The amount of token1 protocol fees that is withdrawn
event CollectProtocol(
address indexed sender,
address indexed recipient,
uint128 amount0,
uint128 amount1
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IUniswapV3PoolImmutables {
/// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
/// @return The contract address
function factory() external view returns (address);
/// @notice The first of the two tokens of the pool, sorted by address
/// @return The token contract address
function token0() external view returns (address);
/// @notice The second of the two tokens of the pool, sorted by address
/// @return The token contract address
function token1() external view returns (address);
/// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
/// @return The fee
function fee() external view returns (uint24);
/// @notice The pool tick spacing
/// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
/// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
/// This value is an int24 to avoid casting even though it is always positive.
/// @return The tick spacing
function tickSpacing() external view returns (int24);
/// @notice The maximum amount of position liquidity that can use any tick in the range
/// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
/// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
/// @return The max amount of liquidity per tick
function maxLiquidityPerTick() external view returns (uint128);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Permissioned pool actions
/// @notice Contains pool methods that may only be called by the factory owner
interface IUniswapV3PoolOwnerActions {
/// @notice Set the denominator of the protocol's % share of the fees
/// @param feeProtocol0 new protocol fee for token0 of the pool
/// @param feeProtocol1 new protocol fee for token1 of the pool
function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;
/// @notice Collect the protocol fee accrued to the pool
/// @param recipient The address to which collected protocol fees should be sent
/// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
/// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
/// @return amount0 The protocol fee collected in token0
/// @return amount1 The protocol fee collected in token1
function collectProtocol(
address recipient,
uint128 amount0Requested,
uint128 amount1Requested
) external returns (uint128 amount0, uint128 amount1);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IUniswapV3PoolState {
/// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
/// when accessed externally.
/// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
/// tick The current tick of the pool, i.e. according to the last tick transition that was run.
/// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
/// boundary.
/// observationIndex The index of the last oracle observation that was written,
/// observationCardinality The current maximum number of observations stored in the pool,
/// observationCardinalityNext The next maximum number of observations, to be updated when the observation.
/// feeProtocol The protocol fee for both tokens of the pool.
/// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
/// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
/// unlocked Whether the pool is currently locked to reentrancy
function slot0()
external
view
returns (
uint160 sqrtPriceX96,
int24 tick,
uint16 observationIndex,
uint16 observationCardinality,
uint16 observationCardinalityNext,
uint8 feeProtocol,
bool unlocked
);
/// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal0X128() external view returns (uint256);
/// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
/// @dev This value can overflow the uint256
function feeGrowthGlobal1X128() external view returns (uint256);
/// @notice The amounts of token0 and token1 that are owed to the protocol
/// @dev Protocol fees will never exceed uint128 max in either token
function protocolFees()
external
view
returns (uint128 token0, uint128 token1);
/// @notice The currently in range liquidity available to the pool
/// @dev This value has no relationship to the total liquidity across all ticks
function liquidity() external view returns (uint128);
/// @notice Look up information about a specific tick in the pool
/// @param tick The tick to look up
/// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
/// tick upper,
/// liquidityNet how much liquidity changes when the pool price crosses the tick,
/// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
/// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
/// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
/// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
/// secondsOutside the seconds spent on the other side of the tick from the current tick,
/// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
/// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
/// In addition, these values are only relative and must be used only in comparison to previous snapshots for
/// a specific position.
function ticks(
int24 tick
)
external
view
returns (
uint128 liquidityGross,
int128 liquidityNet,
uint256 feeGrowthOutside0X128,
uint256 feeGrowthOutside1X128,
int56 tickCumulativeOutside,
uint160 secondsPerLiquidityOutsideX128,
uint32 secondsOutside,
bool initialized
);
/// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
function tickBitmap(int16 wordPosition) external view returns (uint256);
/// @notice Returns the information about a position by the position's key
/// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
/// @return _liquidity The amount of liquidity in the position,
/// Returns feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
/// Returns feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
/// Returns tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
/// Returns tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
function positions(
bytes32 key
)
external
view
returns (
uint128 _liquidity,
uint256 feeGrowthInside0LastX128,
uint256 feeGrowthInside1LastX128,
uint128 tokensOwed0,
uint128 tokensOwed1
);
/// @notice Returns data about a specific observation index
/// @param index The element of the observations array to fetch
/// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
/// ago, rather than at a specific index in the array.
/// @return blockTimestamp The timestamp of the observation,
/// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
/// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
/// Returns initialized whether the observation has been initialized and the values are safe to use
function observations(
uint256 index
)
external
view
returns (
uint32 blockTimestamp,
int56 tickCumulative,
uint160 secondsPerLiquidityCumulativeX128,
bool initialized
);
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.7.6;
import "../contracts/openzeppelin/token/ERC20/IERC20.sol";
/// @title Interface for WETH9
interface IWETH9 is IERC20 {
/// @notice Deposit ether to get wrapped ether
function deposit() external payable;
/// @notice Withdraw wrapped ether to get ether
function withdraw(uint256) external;
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;
/// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
library PoolAddress {
bytes32 internal constant POOL_INIT_CODE_HASH =
0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54;
/// @notice The identifying key of the pool
struct PoolKey {
address token0;
address token1;
uint24 fee;
}
/// @notice Returns PoolKey: the ordered tokens with the matched fee levels
/// @param tokenA The first token of a pool, unsorted
/// @param tokenB The second token of a pool, unsorted
/// @param fee The fee level of the pool
/// @return Poolkey The pool details with ordered token0 and token1 assignments
function getPoolKey(
address tokenA,
address tokenB,
uint24 fee
) internal pure returns (PoolKey memory) {
if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
return PoolKey({token0: tokenA, token1: tokenB, fee: fee});
}
/// @notice Deterministically computes the pool address given the factory and PoolKey
/// @param factory The Uniswap V3 factory contract address
/// @param key The PoolKey
/// @return pool The contract address of the V3 pool
function computeAddress(
address factory,
PoolKey memory key
) internal pure returns (address pool) {
require(key.token0 < key.token1);
pool = address(
uint256(
keccak256(
abi.encodePacked(
hex"ff",
factory,
keccak256(abi.encode(key.token0, key.token1, key.fee)),
POOL_INIT_CODE_HASH
)
)
)
);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.7.6;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.6.0;
import "../contracts/openzeppelin/token/ERC20/IERC20.sol";
library TransferHelper {
/// @notice Transfers tokens from the targeted address to the given destination
/// @notice Errors with 'STF' if transfer fails
/// @param token The contract address of the token to be transferred
/// @param from The originating address from which the tokens will be transferred
/// @param to The destination address of the transfer
/// @param value The amount to be transferred
function safeTransferFrom(
address token,
address from,
address to,
uint256 value
) internal {
(bool success, bytes memory data) = token.call(
abi.encodeWithSelector(
IERC20.transferFrom.selector,
from,
to,
value
)
);
require(
success && (data.length == 0 || abi.decode(data, (bool))),
"STF"
);
}
/// @notice Transfers tokens from msg.sender to a recipient
/// @dev Errors with ST if transfer fails
/// @param token The contract address of the token which will be transferred
/// @param to The recipient of the transfer
/// @param value The value of the transfer
function safeTransfer(address token, address to, uint256 value) internal {
(bool success, bytes memory data) = token.call(
abi.encodeWithSelector(IERC20.transfer.selector, to, value)
);
require(
success && (data.length == 0 || abi.decode(data, (bool))),
"ST"
);
}
/// @notice Approves the stipulated contract to spend the given allowance in the given token
/// @dev Errors with 'SA' if transfer fails
/// @param token The contract address of the token to be approved
/// @param to The target of the approval
/// @param value The amount of the given token the target will be allowed to spend
function safeApprove(address token, address to, uint256 value) internal {
(bool success, bytes memory data) = token.call(
abi.encodeWithSelector(IERC20.approve.selector, to, value)
);
require(
success && (data.length == 0 || abi.decode(data, (bool))),
"SA"
);
}
/// @notice Transfers ETH to the recipient address
/// @dev Fails with `STE`
/// @param to The destination of the transfer
/// @param value The value to be transferred
function safeTransferETH(address to, uint256 value) internal {
(bool success, ) = to.call{value: value}(new bytes(0));
require(success, "STE");
}
}
{
"compilationTarget": {
"contracts/BuyAndBurnV2.sol": "BuyAndBurnV2"
},
"evmVersion": "istanbul",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": false,
"runs": 200
},
"remappings": []
}
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"weth","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"titan","type":"uint256"},{"indexed":true,"internalType":"address","name":"caller","type":"address"}],"name":"BoughtAndBurned","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"weth","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"titan","type":"uint256"},{"indexed":true,"internalType":"address","name":"caller","type":"address"}],"name":"CollectedFees","type":"event"},{"inputs":[],"name":"burnLPTitan","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"buynBurn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBuyAndBurnFundsV2","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBuynBurnInterval","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentContractDay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentEthPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentSqrtPriceX96","outputs":[{"internalType":"uint160","name":"","type":"uint160"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getSlippage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getTitanBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalTitanBuyAndBurnV2","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalWethBuyAndBurnV2","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getWethBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getWethBuyAndBurnCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"secs","type":"uint256"}],"name":"setBuynBurnInterval","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"setCapPerSwap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"ownerAddress","type":"address"}],"name":"setOwnerAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"setSlippage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalTitanXLiquidSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"int256","name":"amount0Delta","type":"int256"},{"internalType":"int256","name":"amount1Delta","type":"int256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"uniswapV3SwapCallback","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]