// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)
pragma solidity ^0.8.0;
/**
* @title Counters
* @author Matt Condon (@shrugs)
* @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
* of elements in a mapping, issuing ERC721 ids, or counting request ids.
*
* Include with `using Counters for Counters.Counter;`
*/
library Counters {
struct Counter {
// This variable should never be directly accessed by users of the library: interactions must be restricted to
// the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
// this feature: see https://github.com/ethereum/solidity/issues/4637
uint256 _value; // default: 0
}
function current(Counter storage counter) internal view returns (uint256) {
return counter._value;
}
function increment(Counter storage counter) internal {
unchecked {
counter._value += 1;
}
}
function decrement(Counter storage counter) internal {
uint256 value = counter._value;
require(value > 0, "Counter: decrement overflow");
unchecked {
counter._value = value - 1;
}
}
function reset(Counter storage counter) internal {
counter._value = 0;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.0;
import "./ECDSA.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* _Available since v3.4._
*/
abstract contract EIP712 {
/* solhint-disable var-name-mixedcase */
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
uint256 private immutable _CACHED_CHAIN_ID;
address private immutable _CACHED_THIS;
bytes32 private immutable _HASHED_NAME;
bytes32 private immutable _HASHED_VERSION;
bytes32 private immutable _TYPE_HASH;
/* solhint-enable var-name-mixedcase */
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
bytes32 hashedName = keccak256(bytes(name));
bytes32 hashedVersion = keccak256(bytes(version));
bytes32 typeHash = keccak256(
"EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
);
_HASHED_NAME = hashedName;
_HASHED_VERSION = hashedVersion;
_CACHED_CHAIN_ID = block.chainid;
_CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);
_CACHED_THIS = address(this);
_TYPE_HASH = typeHash;
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) {
return _CACHED_DOMAIN_SEPARATOR;
} else {
return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION);
}
}
function _buildDomainSeparator(
bytes32 typeHash,
bytes32 nameHash,
bytes32 versionHash
) private view returns (bytes32) {
return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.0;
import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC20
* applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is Context, IERC20, IERC20Metadata {
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address to, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_transfer(owner, to, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
address owner = _msgSender();
_approve(owner, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
* - the caller must have allowance for ``from``'s tokens of at least
* `amount`.
*/
function transferFrom(
address from,
address to,
uint256 amount
) public virtual override returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, amount);
_transfer(from, to, amount);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, allowance(owner, spender) + addedValue);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
address owner = _msgSender();
uint256 currentAllowance = allowance(owner, spender);
require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
unchecked {
_approve(owner, spender, currentAllowance - subtractedValue);
}
return true;
}
/**
* @dev Moves `amount` of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `from` must have a balance of at least `amount`.
*/
function _transfer(
address from,
address to,
uint256 amount
) internal virtual {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(from, to, amount);
uint256 fromBalance = _balances[from];
require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
unchecked {
_balances[from] = fromBalance - amount;
// Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
// decrementing then incrementing.
_balances[to] += amount;
}
emit Transfer(from, to, amount);
_afterTokenTransfer(from, to, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply += amount;
unchecked {
// Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
_balances[account] += amount;
}
emit Transfer(address(0), account, amount);
_afterTokenTransfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
uint256 accountBalance = _balances[account];
require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
unchecked {
_balances[account] = accountBalance - amount;
// Overflow not possible: amount <= accountBalance <= totalSupply.
_totalSupply -= amount;
}
emit Transfer(account, address(0), amount);
_afterTokenTransfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `amount`.
*
* Does not update the allowance amount in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Might emit an {Approval} event.
*/
function _spendAllowance(
address owner,
address spender,
uint256 amount
) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
require(currentAllowance >= amount, "ERC20: insufficient allowance");
unchecked {
_approve(owner, spender, currentAllowance - amount);
}
}
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
/**
* @dev Hook that is called after any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* has been transferred to `to`.
* - when `from` is zero, `amount` tokens have been minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens have been burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _afterTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.19;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IUniswapV2Pair {
function getReserves()
external
view
returns (uint112 reserve0, uint112 reserve1);
function swap(
uint amount0Out,
uint amount1Out,
address to,
bytes calldata data
) external;
function mint(address to) external;
}
interface IUniswapV2Factory {
function createPair(
address tokenA,
address tokenB
) external returns (address pair);
}
interface IUniswapRouter {
function WETH() external view returns (address);
function factory() external view returns (address);
}
interface IWETH {
function deposit() external payable;
}
/**
* @notice UniswapV2Pair does not allow to receive to token0 or token1.
* As a workaround, this contract can receive tokens and has max approval
* for the creator.
*/
contract ERC20HolderWithApproval {
constructor(address token) {
IERC20(token).approve(msg.sender, type(uint256).max);
}
}
/**
* @notice Gas optimized ERC20 token based on openzeppelins's ERC20 contract.
* @dev Optimizations assume a UniswapV2 WETH pair as main liquidity.
*/
abstract contract ERC20UniswapV2InternalSwaps {
address private immutable WETH;
address private immutable wethReceiver;
address public immutable pair;
bool private immutable tokenIsToken0;
constructor(address _router) {
WETH = IUniswapRouter(_router).WETH();
tokenIsToken0 = address(this) < WETH;
pair = IUniswapV2Factory(
IUniswapRouter(_router).factory()
).createPair(address(this), WETH);
wethReceiver = address(new ERC20HolderWithApproval(WETH));
}
/**
* @dev Swap tokens to WETH directly on pair, to save gas.
* No check for minimal return, susceptible to price manipulation!
*/
function _swapForWETH(uint amountToken, address to) internal {
uint amountWeth = _getAmountWeth(amountToken);
_transferFromContractBalance(pair, amountToken);
// Pair prevents receiving tokens to one of the pairs addresses
IUniswapV2Pair(pair).swap(tokenIsToken0 ? 0 : amountWeth, tokenIsToken0 ? amountWeth : 0, wethReceiver, new bytes(0));
IERC20(WETH).transferFrom(wethReceiver, to, amountWeth);
}
/**
* @dev Add tokens and WETH to liquidity, directly on pair, to save gas.
* No check for minimal return, susceptible to price manipulation!
* Sufficient WETH in contract balancee assumed!
*/
function _addLiquidity(
uint amountToken,
address to
) internal returns (uint amountWeth) {
amountWeth = _quoteToken(amountToken);
_transferFromContractBalance(pair, amountToken);
IERC20(WETH).transferFrom(address(this), pair, amountWeth);
IUniswapV2Pair(pair).mint(to);
}
/**
* @dev Add tokens and WETH as initial liquidity, directly on pair, to save gas.
* No checks performed. Caller has to make sure to have access to the token before public!
* Sufficient WETH in contract balancee assumed!
*/
function _addInitialLiquidity(
uint amountToken,
uint amountWeth,
address to
) internal {
_transferFromContractBalance(pair, amountToken);
IERC20(WETH).transferFrom(address(this), pair, amountWeth);
IUniswapV2Pair(pair).mint(to);
}
/**
* @dev Add tokens and ETH as initial liquidity, directly on pair, to save gas.
* No checks performed. Caller has to make sure to have access to the token before public!
* Sufficient ETH in contract balancee assumed!
*/
function _addInitialLiquidityEth(
uint amountToken,
uint amountEth,
address to
) internal {
IWETH(WETH).deposit{value: amountEth}();
_addInitialLiquidity(amountToken, amountEth, to);
}
/** @dev Transfer all WETH from contract balance to `to`. */
function _sweepWeth(address to) internal returns (uint amountWeth) {
amountWeth = IERC20(WETH).balanceOf(address(this));
IERC20(WETH).transferFrom(address(this), to, amountWeth);
}
/** @dev Transfer all ETH from contract balance to `to`. */
function _sweepEth(address to) internal {
_safeTransferETH(to, address(this).balance);
}
/** @dev Quote `amountToken` in ETH, assuming no fees (used for liquidity). */
function _quoteToken(
uint amountToken
) internal view returns (uint amountEth) {
(uint reserveToken, uint reserveEth) = _getReserve();
amountEth = (amountToken * reserveEth) / reserveToken;
}
/** @dev Quote `amountToken` in WETH, assuming 0.3% uniswap fees (used for swap). */
function _getAmountWeth(
uint amounToken
) internal view returns (uint amountWeth) {
(uint reserveToken, uint reserveWeth) = _getReserve();
uint amountTokenWithFee = amounToken * 997;
uint numerator = amountTokenWithFee * reserveWeth;
uint denominator = (reserveToken * 1000) + amountTokenWithFee;
amountWeth = numerator / denominator;
}
/** @dev Quote `amountWeth` in tokens, assuming 0.3% uniswap fees (used for swap). */
function _getAmountToken(
uint amounWeth,
uint reserveToken,
uint reserveWeth
) internal pure returns (uint amountToken) {
uint numerator = reserveToken * amounWeth * 1000;
uint denominator = (reserveWeth - amounWeth) * 997;
amountToken = (numerator / denominator) + 1;
}
/** @dev Get reserves of pair. */
function _getReserve()
internal
view
returns (uint reserveToken, uint reserveWeth)
{
(uint112 reserveToken0, uint112 reserveToken1) = IUniswapV2Pair(pair).getReserves();
(reserveToken, reserveWeth) = tokenIsToken0 ? (reserveToken0, reserveToken1) : (reserveToken1, reserveToken0);
}
/** @dev Transfer `amount` ETH to `to` gas efficiently. */
function _safeTransferETH(address to, uint256 amount) internal {
bool success;
/// @solidity memory-safe-assembly
assembly { // solhint-disable-line no-inline-assembly
// Transfer the ETH and store if it succeeded or not.
success := call(gas(), to, amount, 0, 0, 0, 0)
}
require(success, "ETH_TRANSFER_FAILED");
}
/** @dev Returns true if `_address` is a contract. */
function _isContract(address _address) internal view returns (bool) {
uint32 size;
// solhint-disable-next-line no-inline-assembly
assembly {
size := extcodesize(_address)
}
return (size > 0);
}
/** @dev Transfeer `amount` tokens from contract balance to `to`. */
function _transferFromContractBalance(
address to,
uint256 amount
) internal virtual;
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.0;
import "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC20 standard.
*
* _Available since v4.1._
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.19;
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {ERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/draft-ERC20Permit.sol";
import {ERC20UniswapV2InternalSwaps} from "./erc20/ERC20UniswapV2InternalSwaps.sol";
contract PepaInu is ERC20, ERC20Permit, Ownable, ERC20UniswapV2InternalSwaps {
/** @notice The presale states. */
enum PresaleState {
NONE,
OPEN_FOR_WHITELIST,
OPEN_FOR_PUBLIC,
CLOSED,
COMPLETED
}
/** @notice Percentage of supply to burn (50%). */
uint256 public constant SHARE_BURN = 50_00;
/** @notice Percentage of supply allocated for presale participants (33.22%). */
uint256 public constant SHARE_PRESALE = 33_22;
/** @notice Percentage of supply allocated for initial liquidity (13.28%).*/
uint256 public constant SHARE_LIQUIDITY = 13_28;
/** @notice Percentage of supply allocated for team, marketing, cex listings, etc. (3.5%). */
uint256 public constant SHARE_OTHER = 3_50;
/** @notice Hardcap in ETH for presale (75 ETH). */
uint256 public constant PRESALE_HARDCAP = 75 ether;
/** @notice Per account limit in ETH for presale (0.15 ETH). */
uint256 public constant PRESALE_ACCOUNT_LIMIT = 0.15 ether;
/** @notice Minimum threshold in ETH to trigger #_swapTokens. */
uint256 public constant SWAP_THRESHOLD_ETH_MIN = 0.005 ether;
/** @notice Maximum threshold in ETH to trigger #_swapTokens. */
uint256 public constant SWAP_THRESHOLD_ETH_MAX = 50 ether;
/** @notice Transfer tax in BPS (2%), not changeable. */
uint256 public constant TAX_BPS = 2_00;
uint8 private constant _DECIMALS = 9;
uint256 private constant _MAX_SUPPLY =
420_000_000_000_000_000 * (10 ** _DECIMALS);
uint256 private constant _SUPPLY_PRESALE =
(_MAX_SUPPLY * SHARE_PRESALE) / 100_00;
uint256 private constant _SUPPLY_LIQUIDITY =
(_MAX_SUPPLY * SHARE_LIQUIDITY) / 100_00;
uint256 private constant _SUPPLY_BURN = (_MAX_SUPPLY * SHARE_BURN) / 100_00;
uint256 private constant _SUPPLY_OTHER =
_MAX_SUPPLY - _SUPPLY_PRESALE - _SUPPLY_LIQUIDITY - _SUPPLY_BURN;
/** @notice Tax recipient wallet. */
address public taxRecipient;
/** @notice Whether address is extempt from transfer tax. */
mapping(address => bool) public taxFreeAccount;
/** @notice Whether address is an exchange pool. */
mapping(address => bool) public isExchangePool;
/** @notice Threshold in ETH of tokens to collect before triggering #_swapTokens. */
uint256 public swapThresholdEth = 0.1 ether;
/** @notice Tax manager. */
address public taxManager;
/** @notice Presale commitment in ETH per address. */
mapping(address => uint256) public commitment;
/** @notice Presale amount of claimed tokens per address. */
mapping(address => uint256) public claimedTokens;
/** @notice Whether address is whitelisted for early presale access. */
mapping(address => bool) public presaleWhitelist;
/** @notice Presale total commitment in ETH. */
uint256 public totalCommitments;
/** @notice Presale total amount of claimed tokens. */
uint256 public totalClaimed;
/** @notice Current presale state. */
PresaleState public presaleState;
uint256 private _launchTaxEndsAt = type(uint256).max;
event CommitedToPresale(address indexed account, uint256 amount);
event PresaleOpened();
event PublicPresaleOpened();
event PresaleClosed(uint256 totalCommitments);
event PresaleCompleted(uint256 totalCommitments);
event PresaleClaimed(address indexed account, uint256 amount);
event TaxRecipientChanged(address indexed taxRecipient);
event SwapThresholdChanged(uint256 swapThresholdEth);
event TaxFreeStateChanged(address indexed account, bool indexed taxFree);
event ExchangePoolStateChanged(
address indexed account,
bool indexed isExchangePool
);
event TaxManagerChanged(address indexed taxManager);
event TaxesWithdrawn(uint256 amount);
error MaxAccountLimitExceeded();
error HardcapExceeded();
error PresaleIsClosed();
error PresaleNotCompleted();
error AlreadyClaimed();
error NoCommittments();
error NothingCommitted();
error Unauthorized();
error InvalidParameters();
error InvalidSwapThreshold();
error InvalidTax();
error NoContract();
error InvalidState();
error NotWhitelistedForPresale();
modifier onlyTaxManager() {
if (msg.sender != taxManager) {
revert Unauthorized();
}
_;
}
constructor(
address _owner,
address _taxRecipient,
address _taxManager,
address _router
)
ERC20("Pepa Inu", "PEPA")
ERC20Permit("Pepa Inu")
ERC20UniswapV2InternalSwaps(_router)
{
_transferOwnership(_owner);
taxManager = _taxManager;
emit TaxManagerChanged(_taxManager);
taxRecipient = _taxRecipient;
emit TaxRecipientChanged(_taxRecipient);
taxFreeAccount[address(0)] = true;
emit TaxFreeStateChanged(address(0), true);
taxFreeAccount[_taxRecipient] = true;
emit TaxFreeStateChanged(_taxRecipient, true);
taxFreeAccount[address(this)] = true;
emit TaxFreeStateChanged(address(this), true);
isExchangePool[pair] = true;
emit ExchangePoolStateChanged(pair, true);
_mint(address(this), _SUPPLY_PRESALE + _SUPPLY_LIQUIDITY);
_mint(address(0xdead), _SUPPLY_BURN);
_mint(_taxRecipient, _SUPPLY_OTHER);
}
/** @dev Users can send ETH directly to **this** contract to participate */
receive() external payable {
commitToPresale();
}
// *** User Interface ***
/**
* @notice Commit ETH to presale.
* Presale supply is claimable proportionally for all presale participants.
* Presale has no hardcap and 1 ETH per wallet limit.
* Users can also send ETH directly to **this** contract to participate.
* @dev Callable once presaleOpen.
*/
function commitToPresale() public payable {
address account = msg.sender;
if (_isContract(account)) {
revert NoContract();
}
if (
presaleState == PresaleState.OPEN_FOR_WHITELIST &&
!presaleWhitelist[account]
) {
revert NotWhitelistedForPresale();
}
if (
presaleState != PresaleState.OPEN_FOR_WHITELIST &&
presaleState != PresaleState.OPEN_FOR_PUBLIC
) {
revert PresaleIsClosed();
}
commitment[account] += msg.value;
totalCommitments += msg.value;
if (totalCommitments > PRESALE_HARDCAP) {
revert HardcapExceeded();
}
if (commitment[account] > PRESALE_ACCOUNT_LIMIT) {
revert MaxAccountLimitExceeded();
}
emit CommitedToPresale(account, msg.value);
}
/**
* @notice Claim callers presale tokens.
* @dev Callable once presaleCompleted.
*/
function claimPresale() external {
address account = msg.sender;
if (_isContract(account)) {
revert NoContract();
}
if (presaleState != PresaleState.COMPLETED) {
revert PresaleNotCompleted();
}
if (commitment[account] == 0) {
revert NothingCommitted();
}
if (claimedTokens[account] != 0) {
revert AlreadyClaimed();
}
uint256 amountTokens = (_SUPPLY_PRESALE * commitment[account]) /
totalCommitments;
claimedTokens[account] = amountTokens;
totalClaimed += amountTokens;
_transferFromContractBalance(account, amountTokens);
emit PresaleClaimed(account, amountTokens);
}
/** @notice Returns amount of tokens to be claimed by presale participants. */
function unclaimedSupply() external view returns (uint256) {
return _SUPPLY_PRESALE - totalClaimed;
}
// *** Owner Interface ***
/**
* @notice Whitelist wallet addresses for ealry presale access.
* @param accounts accounts to whitelist
*/
function whitelistForPresale(
address[] calldata accounts
) external onlyOwner {
for (uint256 i = 0; i < accounts.length; ++i) {
presaleWhitelist[accounts[i]] = true;
}
}
/**
* @notice Open presale for all users.
*/
function openPresale() external onlyOwner {
if (presaleState != PresaleState.NONE) {
revert InvalidState();
}
presaleState = PresaleState.OPEN_FOR_WHITELIST;
emit PresaleOpened();
}
/**
* @notice Open presale for all users.
* Called after #openPresale.
*/
function openPublicPresale() external onlyOwner {
if (presaleState != PresaleState.OPEN_FOR_WHITELIST) {
revert InvalidState();
}
presaleState = PresaleState.OPEN_FOR_PUBLIC;
emit PublicPresaleOpened();
}
/**
* @notice Close the presale.
* Called after #openPublicPresale.
*/
function closePresale() external onlyOwner {
if (presaleState != PresaleState.OPEN_FOR_PUBLIC) {
revert InvalidState();
}
if (totalCommitments == 0) {
revert NoCommittments();
}
presaleState = PresaleState.CLOSED;
emit PresaleClosed(totalCommitments);
}
/**
* @notice Complete the presale.
* @dev Adds 47.5% of collected ETH with 28.5% of totalSupply to Liquidity.
* Sends the remaining 52.5% of collected ETH to current owner.
* Renounces ownership.
* Called after #closePresale.
*/
function completePresale() external onlyOwner {
if (presaleState != PresaleState.CLOSED) {
revert InvalidState();
}
uint256 amountEthForLiquidity = (totalCommitments * _SUPPLY_LIQUIDITY) /
_SUPPLY_PRESALE;
_addInitialLiquidityEth(
_SUPPLY_LIQUIDITY,
amountEthForLiquidity,
taxRecipient
);
_sweepEth(taxRecipient);
renounceOwnership();
presaleState = PresaleState.COMPLETED;
emit PresaleCompleted(totalCommitments);
}
// *** Tax Manager Interface ***
/**
* @notice Set `taxFree` state of `account`.
* @param account account
* @param taxFree true if `account` should be extempt from transfer taxes.
* @dev Only callable by taxManager.
*/
function setTaxFreeAccount(
address account,
bool taxFree
) external onlyTaxManager {
if (taxFreeAccount[account] == taxFree) {
revert InvalidParameters();
}
taxFreeAccount[account] = taxFree;
emit TaxFreeStateChanged(account, taxFree);
}
/**
* @notice Set `exchangePool` state of `account`
* @param account account
* @param exchangePool whether `account` is an exchangePool
* @dev ExchangePool state is used to decide if transfer is a swap
* and should trigger #_swapTokens.
*/
function setExchangePool(
address account,
bool exchangePool
) external onlyTaxManager {
if (isExchangePool[account] == exchangePool) {
revert InvalidParameters();
}
isExchangePool[account] = exchangePool;
emit ExchangePoolStateChanged(account, exchangePool);
}
/**
* @notice Transfer taxManager role to `newTaxManager`.
* @param newTaxManager new taxManager
* @dev Only callable by taxManager.
*/
function transferTaxManager(address newTaxManager) external onlyTaxManager {
if (newTaxManager == taxManager) {
revert InvalidParameters();
}
taxManager = newTaxManager;
emit TaxManagerChanged(newTaxManager);
}
/**
* @notice Set taxRecipient address to `newTaxRecipient`.
* @param newTaxRecipient new taxRecipient
* @dev Only callable by taxManager.
*/
function setTaxRecipient(address newTaxRecipient) external onlyTaxManager {
if (newTaxRecipient == taxRecipient) {
revert InvalidParameters();
}
taxRecipient = newTaxRecipient;
emit TaxRecipientChanged(newTaxRecipient);
}
/**
* @notice Withdraw tax collected (which would usually be automatically swapped to weth) to taxRecipient
* @dev Only callable by taxManager.
*/
function withdrawTaxes() external onlyTaxManager {
uint256 balance = balanceOf(address(this));
if (balance > 0) {
super._transfer(address(this), taxRecipient, balance);
emit TaxesWithdrawn(balance);
}
}
/**
* @notice Change the amount of tokens collected via tax before a swap is triggered.
* @param newSwapThresholdEth new threshold received in ETH
* @dev Only callable by taxManager
*/
function setSwapThresholdEth(
uint256 newSwapThresholdEth
) external onlyTaxManager {
if (
newSwapThresholdEth < SWAP_THRESHOLD_ETH_MIN ||
newSwapThresholdEth > SWAP_THRESHOLD_ETH_MAX ||
newSwapThresholdEth == swapThresholdEth
) {
revert InvalidSwapThreshold();
}
swapThresholdEth = newSwapThresholdEth;
emit SwapThresholdChanged(newSwapThresholdEth);
}
/**
* @notice Threshold of how many tokens to collect from tax before calling #swapTokens.
* @dev Depends on swapThresholdEth which can be configured by taxManager.
* Restricted to 5% of liquidity.
*/
function swapThresholdToken() public view returns (uint256) {
(uint reserveToken, uint reserveWeth) = _getReserve();
uint256 maxSwapEth = (reserveWeth * 5) / 100;
return
_getAmountToken(
swapThresholdEth > maxSwapEth ? maxSwapEth : swapThresholdEth,
reserveToken,
reserveWeth
);
}
// *** Internal Interface ***
/** @notice IERC20#_transfer */
function _transfer(
address from,
address to,
uint256 amount
) internal virtual override {
if (
!taxFreeAccount[from] &&
!taxFreeAccount[to] &&
!taxFreeAccount[msg.sender]
) {
uint256 fee = (amount * TAX_BPS) / 100_00;
super._transfer(from, address(this), fee);
unchecked {
amount -= fee;
}
if (isExchangePool[to]) /* selling */ {
_swapTokens(swapThresholdToken());
}
}
super._transfer(from, to, amount);
}
/** @dev Transfer `amount` tokens from contract balance to `to`. */
function _transferFromContractBalance(
address to,
uint256 amount
) internal override {
super._transfer(address(this), to, amount);
}
/**
* @notice Swap `amountToken` collected from tax to WETH to add to send to taxRecipient.
*/
function _swapTokens(uint256 amountToken) internal {
if (
balanceOf(address(this)) + totalClaimed <
amountToken + _SUPPLY_PRESALE
) {
return;
}
_swapForWETH(amountToken, taxRecipient);
}
function decimals() public view virtual override returns (uint8) {
return _DECIMALS;
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/extensions/draft-ERC20Permit.sol)
pragma solidity ^0.8.0;
import "./draft-IERC20Permit.sol";
import "../ERC20.sol";
import "../../../utils/cryptography/ECDSA.sol";
import "../../../utils/cryptography/EIP712.sol";
import "../../../utils/Counters.sol";
/**
* @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* _Available since v3.4._
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
using Counters for Counters.Counter;
mapping(address => Counters.Counter) private _nonces;
// solhint-disable-next-line var-name-mixedcase
bytes32 private constant _PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
* However, to ensure consistency with the upgradeable transpiler, we will continue
* to reserve a slot.
* @custom:oz-renamed-from _PERMIT_TYPEHASH
*/
// solhint-disable-next-line var-name-mixedcase
bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC20 token name.
*/
constructor(string memory name) EIP712(name, "1") {}
/**
* @dev See {IERC20Permit-permit}.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual override {
require(block.timestamp <= deadline, "ERC20Permit: expired deadline");
bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
require(signer == owner, "ERC20Permit: invalid signature");
_approve(owner, spender, value);
}
/**
* @dev See {IERC20Permit-nonces}.
*/
function nonces(address owner) public view virtual override returns (uint256) {
return _nonces[owner].current();
}
/**
* @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view override returns (bytes32) {
return _domainSeparatorV4();
}
/**
* @dev "Consume a nonce": return the current value and increment.
*
* _Available since v4.1._
*/
function _useNonce(address owner) internal virtual returns (uint256 current) {
Counters.Counter storage nonce = _nonces[owner];
current = nonce.current();
nonce.increment();
}
}
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
{
"compilationTarget": {
"contracts/PepaInu.sol": "PepaInu"
},
"evmVersion": "paris",
"libraries": {},
"metadata": {
"bytecodeHash": "ipfs"
},
"optimizer": {
"enabled": true,
"runs": 20000
},
"remappings": []
}
[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_taxRecipient","type":"address"},{"internalType":"address","name":"_taxManager","type":"address"},{"internalType":"address","name":"_router","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyClaimed","type":"error"},{"inputs":[],"name":"HardcapExceeded","type":"error"},{"inputs":[],"name":"InvalidParameters","type":"error"},{"inputs":[],"name":"InvalidState","type":"error"},{"inputs":[],"name":"InvalidSwapThreshold","type":"error"},{"inputs":[],"name":"InvalidTax","type":"error"},{"inputs":[],"name":"MaxAccountLimitExceeded","type":"error"},{"inputs":[],"name":"NoCommittments","type":"error"},{"inputs":[],"name":"NoContract","type":"error"},{"inputs":[],"name":"NotWhitelistedForPresale","type":"error"},{"inputs":[],"name":"NothingCommitted","type":"error"},{"inputs":[],"name":"PresaleIsClosed","type":"error"},{"inputs":[],"name":"PresaleNotCompleted","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"CommitedToPresale","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"bool","name":"isExchangePool","type":"bool"}],"name":"ExchangePoolStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PresaleClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"totalCommitments","type":"uint256"}],"name":"PresaleClosed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"totalCommitments","type":"uint256"}],"name":"PresaleCompleted","type":"event"},{"anonymous":false,"inputs":[],"name":"PresaleOpened","type":"event"},{"anonymous":false,"inputs":[],"name":"PublicPresaleOpened","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"swapThresholdEth","type":"uint256"}],"name":"SwapThresholdChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"bool","name":"taxFree","type":"bool"}],"name":"TaxFreeStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"taxManager","type":"address"}],"name":"TaxManagerChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"taxRecipient","type":"address"}],"name":"TaxRecipientChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TaxesWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRESALE_ACCOUNT_LIMIT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRESALE_HARDCAP","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SHARE_BURN","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SHARE_LIQUIDITY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SHARE_OTHER","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SHARE_PRESALE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SWAP_THRESHOLD_ETH_MAX","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SWAP_THRESHOLD_ETH_MIN","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"TAX_BPS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimPresale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"claimedTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"closePresale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"commitToPresale","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"commitment","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"completePresale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isExchangePool","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"openPresale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"openPublicPresale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"presaleState","outputs":[{"internalType":"enum PepaInu.PresaleState","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"presaleWhitelist","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bool","name":"exchangePool","type":"bool"}],"name":"setExchangePool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newSwapThresholdEth","type":"uint256"}],"name":"setSwapThresholdEth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bool","name":"taxFree","type":"bool"}],"name":"setTaxFreeAccount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newTaxRecipient","type":"address"}],"name":"setTaxRecipient","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"swapThresholdEth","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"swapThresholdToken","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"taxFreeAccount","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"taxManager","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"taxRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalClaimed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalCommitments","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newTaxManager","type":"address"}],"name":"transferTaxManager","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unclaimedSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"}],"name":"whitelistForPresale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawTaxes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]